题目内容
如图,已知,正方形ABCD和一个圆心角为45°的扇形,圆心与A点重合,此扇形绕A点旋转时,两半径分别交直线BC、CD于点P.K.
(1)当点P、K分别在边BC.CD上时,如图(1),求证:BP+DK=PK.
(2)当点P、K分别在直线BC.CD上时,如图(2),线段BP、DK、PK之间又有怎样的数量关系,请直接写出结论.
(3)在图(3)中,作直线BD交直线AP、AK于M、Q两点.若PK=5,CP=4,求PM的长.
(1)当点P、K分别在边BC.CD上时,如图(1),求证:BP+DK=PK.
(2)当点P、K分别在直线BC.CD上时,如图(2),线段BP、DK、PK之间又有怎样的数量关系,请直接写出结论.
(3)在图(3)中,作直线BD交直线AP、AK于M、Q两点.若PK=5,CP=4,求PM的长.
分析:(1)延长CD到N,使DN=BP,连接AN,根据正方形的性质和全等三角形的判定SAS证△ABP≌△ADN,推出AN=AP,∠NAD=∠PAB,求出∠NAK=∠KAP=45°,根据SAS证△NAK和△KAP全等即可;
(2)在BC上截取BN=DK,连接AN,与(1)类似证△ADK≌△ABN和△KAP≌△NAP,推出BN=DK,NP=PK即可;
(3)在DC上截取DN=BP,连接AN,与(1)类似证△ADN≌△ABP和△KAP≌△KAN,推出BP=DN,NK=PK,得出DK=PB+PK,求出正方形的边长,根据勾股定理求出AN、AK、AP,求出∠ABM=∠ACK=135°,∠PAB=∠CAK,证△MAB和△KAC相似,得出比例式,代入求出即可.
(2)在BC上截取BN=DK,连接AN,与(1)类似证△ADK≌△ABN和△KAP≌△NAP,推出BN=DK,NP=PK即可;
(3)在DC上截取DN=BP,连接AN,与(1)类似证△ADN≌△ABP和△KAP≌△KAN,推出BP=DN,NK=PK,得出DK=PB+PK,求出正方形的边长,根据勾股定理求出AN、AK、AP,求出∠ABM=∠ACK=135°,∠PAB=∠CAK,证△MAB和△KAC相似,得出比例式,代入求出即可.
解答:(1)证明:延长CD到N,使DN=BP,连接AN,
∵正方形ABCD,
∴∠ABP=∠ADC=90°=∠BAD,AD=AB,
∴∠ADN=90°=∠ABP,
在△ABP和△ADN中
,
∴△ABP≌△ADN,
∴AN=AP,∠NAD=∠PAB,
∵∠BAD=90°,∠PAK=45°,
∴∠BAP+∠KAD=45°,
∴∠NAD+∠DAK=45°,
即∠NAK=∠KAP=45°,
在△NAK和△KAP中
,
∴△PAK≌△NAK,
∴NK=KP,
∴BP+DK=PK.
(2)解:BP=DK+PK,
理由是:在BC上截取BN=DK,连接AN,
与(1)类似△ADK≌△ABN,
∴AK=AN,∠KAD=∠BAN,
∵∠KAP=45°,
∴∠NAB+∠DAP=45°,
∴∠NAP=90°-45°=45°=∠KAP,
与(1)类似△KAP≌△NAP(SAS),
∴PK=PN,
∴BP=BN+NP=DK+PK,
即BP=DK+PK.
(3)解:在△CPK中,CP=4,PK=5,由勾股定理得:CK=3,
在DC上截取DN=BP,连接AN,
由(1)可知:AN=AP,
与(2)证法类似△NAK≌△PAK,
∴PK=NF,
∴DK=PB+PK,
即DC+3=4-BC+5,
∵正方形ABCD,DC=BC,
解得:AD=DC=BC=AB=3,
连接AC,
∵正方形ABCD,
∴∠ACB=∠DBC=∠MBP=45°,
∵∠ABC=∠PCK=90°,
∴∠ABM=∠ACK=45°+90°=135°,
在Rt△ABC中,由勾股定理得:AC=3
,
在Rt△ABP中,由勾股定理得:AP=
=
,
在Rt△ADK中,由勾股定理得:AK=
=3
,
∵∠PAK=∠BAC=45°,∠BAK=∠BAK,
∴∠PAB=∠KAC,
∵∠ABM=∠ACK,
∴△MAB∽△KAC,
∴
=
,
即
=
,
解得:PM=
,
答:PM的长是
.
∵正方形ABCD,
∴∠ABP=∠ADC=90°=∠BAD,AD=AB,
∴∠ADN=90°=∠ABP,
在△ABP和△ADN中
|
∴△ABP≌△ADN,
∴AN=AP,∠NAD=∠PAB,
∵∠BAD=90°,∠PAK=45°,
∴∠BAP+∠KAD=45°,
∴∠NAD+∠DAK=45°,
即∠NAK=∠KAP=45°,
在△NAK和△KAP中
|
∴△PAK≌△NAK,
∴NK=KP,
∴BP+DK=PK.
(2)解:BP=DK+PK,
理由是:在BC上截取BN=DK,连接AN,
与(1)类似△ADK≌△ABN,
∴AK=AN,∠KAD=∠BAN,
∵∠KAP=45°,
∴∠NAB+∠DAP=45°,
∴∠NAP=90°-45°=45°=∠KAP,
与(1)类似△KAP≌△NAP(SAS),
∴PK=PN,
∴BP=BN+NP=DK+PK,
即BP=DK+PK.
(3)解:在△CPK中,CP=4,PK=5,由勾股定理得:CK=3,
在DC上截取DN=BP,连接AN,
由(1)可知:AN=AP,
与(2)证法类似△NAK≌△PAK,
∴PK=NF,
∴DK=PB+PK,
即DC+3=4-BC+5,
∵正方形ABCD,DC=BC,
解得:AD=DC=BC=AB=3,
连接AC,
∵正方形ABCD,
∴∠ACB=∠DBC=∠MBP=45°,
∵∠ABC=∠PCK=90°,
∴∠ABM=∠ACK=45°+90°=135°,
在Rt△ABC中,由勾股定理得:AC=3
2 |
在Rt△ABP中,由勾股定理得:AP=
32+(4-3)2 |
10 |
在Rt△ADK中,由勾股定理得:AK=
32+(3+3)2 |
5 |
∵∠PAK=∠BAC=45°,∠BAK=∠BAK,
∴∠PAB=∠KAC,
∵∠ABM=∠ACK,
∴△MAB∽△KAC,
∴
AM |
AK |
AB |
AC |
即
| ||
3
|
3 | ||
3
|
解得:PM=
| ||
2 |
答:PM的长是
| ||
2 |
点评:本题考查了勾股定理,正方形的性质,相似三角形的性质和判定,全等三角形的性质和判定,旋转的性质等知识点的运用,本题主要考查了学生分析问题和解决问题的能力,题目综合性比较强,但证明方法类似,注意:证三条线段之间的关系的解题思路.
练习册系列答案
相关题目