题目内容
【题目】如图,已知OA⊥OB,点O为垂足,OC是∠AOB内任意一条射线,OB,OD分别平分∠COD,∠BOE,下列结论:①∠COD=∠BOE;②∠COE=3∠BOD;③∠BOE=∠AOC;④∠AOC与∠BOD互余,其中正确的有______(只填写正确结论的序号).
【答案】①②④
【解析】
由角平分线将角分成相等的两部分.结合选项得出正确结论.
解:①∵OB,OD分别平分∠COD,∠BOE,
∴∠COB=∠BOD=∠DOE,
设∠COB=x,
∴∠COD=2x,∠BOE=2x,
∴∠COD=∠BOE,
故①正确;
②∵∠COE=3x,∠BOD=x,
∴∠COE=3∠BOD,
故②正确;
③∵∠BOE=2x,∠AOC=90°-x,
∴∠BOE与∠AOC不一定相等,
故③不正确;
④∵OA⊥OB,
∴∠AOB=∠AOC+∠COB=90°,
∵∠BOC=∠BOD,
∴∠AOC与∠BOD互余,
故④正确,
∴本题正确的有:①②④;
故答案为:①②④.
练习册系列答案
相关题目