题目内容

【题目】如图,⊙ORtABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,EAC延长线上一点,EDABF.

(1)判断DCE的形状;

(2)设⊙O的半径为1,且OF=,求证:DCE≌△OCB.

【答案】(1)CDE为等腰三角形;(2)证明见解析.

【解析】试题分析:(1)ABC=30°可得BAC=60°,结合DEAB,可得AED的度数;根据弦切角定理可得DCB=60°,再结合ACB=90°,从而可得DCE的度数;

(2)由(1)的证明过程可得ABC=∠OCB=∠DCE=∠CED=30°,要证明BOC≌△EDC,只要证明BC=CE,接下来由圆半径为1可得AB的长,结合含30度角直角三角形的性质以及勾股定理可得ACBC的长,在Rt△AEF中,先求得AF的长,再利用含30度角直角三角形的性质可得AE的长,继而得到CE的长,从而可证CDE≌△COB..

(1)解:∵∠ABC=30°,

∴∠BAC=60°.

又∵OA=OC,

∴△AOC是正三角形.

又∵CD是切线,

∴∠OCD=90°.

∴∠DCE=180°﹣60°﹣90°=30°.

EDABF,

∴∠CED=90°﹣BAC=30°.

CDE为等腰三角形.

(2)证明:∵CD是⊙O的切线,

∴∠OCD=90°,

∵∠BAC=60°,AO=CO,

∴∠OCA=60°,∵∠DCE=30°.

A,C,E三点同线

ABC中,

AB=2,AC=AO=1,

BC==

OF=

AF=AO+OF=

又∵∠AEF=30°,

AE=2AF=+1,

CE=AE﹣AC==BC,

而∠OCB=ACB﹣ACO=90°﹣60°=30°=ABC;

CDE≌△COB.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网