题目内容

如图所示,在四边形ABCD中,∠B+∠D=1800,AB=AD,AC=1,∠ACD=600,则四边形ABCD的面积为               
过A点分别作AE⊥BC于E,AF⊥CD于F,连接BD,
∵∠ADF+∠ABC=180°,且∠ABE+∠ABC=180°,
∴∠ADF=∠ABE,且A,B,C,D四点共圆,
又∠ACD=60°,
∴∠ABD=∠ACD=60°,又AB=AD,
∴△ABD是等边三角形,
∴∠BAD=60°,
∴∠EAF=∠EAB+∠BAF,∠BAD=∠FAD+∠BAF,
∴∠EAF=∠BAD=60°,
∴∠EAC=180°-60°=120°,
∴∠AEC=60°,
∴S△AEC="1/2" EC•AE="1/2" AB•sin60°•AB•cos60°=
同理S△AEC=  ,
在△ABE与△ADF中,
∵∠ADF=∠ABE,AB=AD,∠AEB=∠AFD,
∴△AEB≌△AFD,
∴S四边形ABCD=S四边形AECF=S△AEC+S△AEC= + =
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网