题目内容
如图,已知四边形ABCD的外接圆⊙O的半径为2,对角线AC与BD的交点为E,AE=EC,AB=
AE,且BD=2
,求四边形ABCD的面积.

2 |
3 |

∵AE=EC,AB=
AE,
∴AB2=2AE2=AE•AC,
∴AB:AC=AE:AB,
又∠EAB=∠BAC,
∴△ABE∽△ACB,
∴∠ABE=∠ACB,
从而AB=AD.
连接AO,交BD于H,连接OB,
∵AB=AD,
∴AO⊥BD,
∴BH=HD,
BO=2,BH=
,
则BH=HD=
.
∴OH=
=
=1,AH=OA-OH=2-1=1.
∴S△ABD=
BD•AH=
×2
×1=
,
∵E是AC的中点,∴S△ABE=S△BCE,
S△ADE=S△CDE,∴S△ABD=S△BCD,
∴S四边形ABCD=2S△ABD=2
.

2 |
∴AB2=2AE2=AE•AC,
∴AB:AC=AE:AB,
又∠EAB=∠BAC,
∴△ABE∽△ACB,
∴∠ABE=∠ACB,
从而AB=AD.
连接AO,交BD于H,连接OB,
∵AB=AD,
∴AO⊥BD,
∴BH=HD,
BO=2,BH=
3 |
则BH=HD=
3 |
∴OH=
OB2-BH2 |
4-3 |
∴S△ABD=
1 |
2 |
1 |
2 |
3 |
3 |
∵E是AC的中点,∴S△ABE=S△BCE,
S△ADE=S△CDE,∴S△ABD=S△BCD,
∴S四边形ABCD=2S△ABD=2
3 |


练习册系列答案
相关题目