ÌâÄ¿ÄÚÈÝ
16£®ÈçͼÊǵÚÆß½ì¹ú¼ÊÊýѧ½ÌÓý´ó»áµÄ»á»ÕʾÒâͼ£¬Ö÷Ìâͼ°¸ÊÇÓÉÒ»Á¬´®ÈçͼËùʾµÄÖ±½ÇÈý½ÇÐÎÑÝ»¯¶ø³ÉµÄ£®ÆäÖеĵÚÒ»¸öÈý½ÇÐÎOA1A2ÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬ÇÒOA1=A1A2=A2A3¡=A8A9=1£®£¨1£©¸ù¾Ýͼʾ£¬Çó³öOA2µÄ³¤Îª$\sqrt{2}$£»OA4µÄ³¤Îª2£»OA6µÄ³¤Îª$\sqrt{6}$£®
£¨2£©Èç¹û°´´ËÑݱ䷽ʽһֱÁ¬Ðø×÷ͼµ½¡÷OAn-1An£¬ÔòÏ߶ÎOAnµÄ³¤ºÍ¡÷OAn-1AnµÄÃæ»ý·Ö±ðÊǶàÉÙ£¿£¨Óú¬nµÄ´úÊýʽ±íʾ£©
£¨3£©Èô·Ö±ðÓÃS1£¬S2£¬S3¡S100±íʾ¡÷OA1A2£¬¡÷OA2A3£¬¡÷OA3A4¡¡÷OA99A100µÄÃæ»ý£¬ÊÔÇó³öS12+S22+S32+¡+S1002µÄÖµ£®
·ÖÎö £¨1£©ÀûÓù´¹É¶¨ÀíÒÀ´Î¼ÆËã¼´¿É£»
£¨2£©ÒÀ¾Ý£¨1£©µÄ¼ÆËãÕÒ³öÆäÖеĹæÂɿɵõ½OAnµÄ³¤£¬È»ºóÒÀ¾Ý¼ÆËã³öÇ°¼¸¸öÈý½ÇÐεÄÃæ»ý£¬È»ºóÒÀ¾Ý¹æÂɽâ´ðÇóµÃ¡÷OAn-1AnµÄÃæ»ý¼´¿É£»
£¨3£©Ê×ÏÈÒÀ¾ÝÌâÒâÁгöËãʽ£¬È»ºóÔÙÇó½â¼´¿É£®
½â´ð ½â£º£¨1£©OA2=$\sqrt{O{{A}_{1}}^{2}+{A}_{1}{{A}_{2}}^{2}}$=$\sqrt{2}$£¬OA3=$\sqrt{O{{A}_{2}}^{2}+{A}_{2}{{A}_{3}}^{2}}$=$\sqrt{3}$£¬OA4=$\sqrt{O{{A}_{3}}^{2}+{A}_{3}{{A}_{4}}^{2}}$=$\sqrt{4}$=2£¬
¡
OA6=$\sqrt{6}$
¹Ê´ð°¸Îª£º$\sqrt{2}$£»2£»$\sqrt{6}$£®
£¨2£©ÓÉ£¨1£©¿ÉÖª£ºOAn=$\sqrt{n}$£®
S1=$\frac{1}{2}$¡Á1¡Á1=$\frac{1}{2}$£»
S2=$\frac{1}{2}$¡Á$\sqrt{2}$¡Á$\frac{\sqrt{2}}{2}$£»
S3=$\frac{1}{2}$¡Á$\sqrt{3}$¡Á1=$\frac{\sqrt{3}}{2}$£»
¡
¡÷OAn-1AnµÄÃæ»ý=$\frac{\sqrt{n-1}}{2}$£®
£¨3£©S12+S22+S32+¡+S1002=£¨$\frac{1}{2}$£©2+£¨$\frac{\sqrt{2}}{2}$£©2+£¨$\frac{\sqrt{3}}{2}$£©2+¡+£¨$\frac{\sqrt{100}}{2}$£©2=$\frac{1+2+3+¡+100}{4}$=1262.5£®
µãÆÀ ´ËÌâÖ÷Òª¿¼²éµÄÊǵÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊÒÔ¼°¹´¹É¶¨ÀíµÄÔËÓúÍÀûÓùæÂɵÄ̽²é½â¾öÎÊÌ⣬ÕÒ³öÆäÖеĹæÂÉÊǽâÌâµÄ¹Ø¼ü£®
A£® | 7¡æ | B£® | 8¡æ | C£® | 9¡æ | D£® | 10¡æ |