题目内容
【题目】已知抛物线y1=x2与直线y2=-x+3相交于A,B两点.
(1)求这两个交点的坐标;
(2)点O的坐标是原点,求△AOB的面积;
(3)直接写出当y1<y2时,x的取值范围.
【答案】(1) A(-2,4),B(,) ; (2) S△AOB=;(3)-2<x<.
【解析】
(1)根据解方程组,可得交点坐标;
(2)根据面积的和差,可得答案;
(3)根据函数与不等式的关系,可得答案.
(1)联立抛物线y1=x2与直线y2=-x+3,得
,
解得,,
A(-2,4),B(,);
(2)如图,
当y=0时,-x+3=0,解得x=6,
即C(6,0).
S△AOB=S△AOC-S△BOC=×6×4-×6×=;
(3)抛物线在直线的下方,得-2<x<.
练习册系列答案
相关题目
【题目】某中学初三年级的同学参加了一项节能的社会调查活动,为了了解家庭用电的情况,他们随即调查了某地50个家庭一年中生活用电的电费支出情况,并绘制了如下不完整的频数分布表和频数分布直方图(费用取整数,单位:元).
分组/元 | 频 数 | 频 率 |
1000<x<1200 | 3 | 0.060 |
1200<x<1400 | 12 | 0.240 |
1400<x<1600 | 18 | 0.360 |
1600<x<1800 | a | 0.200 |
1800<x<2000 | 5 | b |
2000<x<2200 | 2 | 0.040 |
合计 | 50 | 1.000 |
请你根据以上提供的信息,解答下列问题:
(1)补全频数分布表a= ,b= ,和频数分布直方图;
(2)这50个家庭电费支出的中位数落在哪个组内?
(3)若该地区有3万个家庭,请你估计该地区有多少个一年电费支出低于1400元的家庭?