题目内容

如图:∠MON=90°,在∠MON的内部有一个正方形AOCD,点A、C分别在射线OM、ON上,点B1是ON上的任意一点,在∠MON的内部作正方形AB1C1D1
(1)连续D1D,求证:∠D1DA=90°;
(2)连接CC1,猜一猜,∠C1CN的度数是多少?并证明你的结论;
(3)在ON上再任取一点B2,以AB2为边,在∠MON的内部作正方形AB2C2D2,观察图形,并结合(1)、(2)的结论,请你再做出一个合理的判断.
(1)证明:∵∠D1AD+∠B1AD=90°,∠OAB1+∠B1AD=90°,
∴∠B1AO=∠D1AD,
∵AD1=AB1,AO=AD,
∴△OAB1≌△DAD1,∴∠D1DA=∠O=90°;(D1,D,C在同一条直线上).


(2)猜想∠C1CN=45°.
证明:作C1H⊥ON于H.作C1G⊥CD1于G;
则有C1G=CH.
∵∠C1D1C+∠AD1D=90°,∠C1B1H+∠AB1O=90°
∴∠C1D1C=∠C1B1H,
∵C1D1=B1C1,∠D1C1E=∠C1HB1=90°,
∴△C1GD1≌△C1B1H,
∴C1G=C1H,
又∵CH=C1G,
∴直角三角形CHC1是个等腰直角三角形,
∴∠C1CN=45°.


(3)作图;
得∠ADD2=90°(∠ADD2=90°、∠C2CN=45°均可).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网