题目内容

如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且AE⊥AF,A为垂足.
求证:△AEF是等腰直角三角形.
证明:∵四边形ABCD是正方形,
∴AB=AD,∠ABC=∠D=∠BAD=90°
∴∠ABF=90°.
∵AE⊥AF,
∴∠FAE=90°.
∴∠FAE=∠BAD,
∴∠FAE-∠BAE=∠BAD-∠BAE,
即∠BAF=∠DAE.
∵在△BAF和△DAE中,
∠BAF=∠DAE
BA=DA
∠ABF=∠ADE

∴△BAF≌△DAE(ASA),
∴AF=AE.
∴△AEF是等腰直角三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网