题目内容
【题目】如图,在△ABC中,AB=BC=4,S△ABC=4 ,点P、Q、K分别为线段AB、BC、AC上任意一点,则PK+QK的最小值为 .
【答案】2
【解析】解:如图,过A作AH⊥BC交CB的延长线于H,
∵AB=CB=4,S△ABC=4 ,
∴AH=2 ,
∴cos∠HAB= = ,
∴∠HAB=30°,
∴∠ABH=60°,
∴∠ABC=120°,
∵∠BAC=∠C=30°,
作点P关于直线AC的对称点P′,
过P′作P′Q⊥BC于Q交AC于K,
则P′Q 的长度=PK+QK的最小值,
∴∠P′AK=∠BAC=30°,
∴∠HAP′=90°,
∴∠H=∠HAP′=∠P′QH=90°,
∴四边形AP′QH是矩形,
∴P′Q=AH=2 ,
即PK+QK的最小值为2 .
故答案为:2 .
根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥BC时PK+QK的最小值,然后求解即可.
练习册系列答案
相关题目