题目内容

【题目】如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y﹣4)2的值为 .

【答案】16
【解析】∵四边形ABCD是矩形,AB=x,AD=y,
∴CD=AB=x,BC=AD=y,∠BCD=90°.
又∵BD⊥DE,点F是BE的中点,DF=4,
∴BF=DF=EF=4.
∴CF=4﹣BC=4﹣y.
∴在Rt△DCF中,DC2+CF2=DF2 , 即x2+(4﹣y)2=42=16,
∴x2+(y﹣4)2=x2+(4﹣y)2=16.
故答案是:16.
【考点精析】关于本题考查的直角三角形斜边上的中线和勾股定理的概念,需要了解直角三角形斜边上的中线等于斜边的一半;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网