题目内容
【题目】如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE∥AD,交⊙O于点E,连接ED。
(1)求证:ED∥AC
(2)若BD=2CD,设△EBD的面积为S1 , △ADC的面积为S2 , 且S12﹣16S2+4=0,求△ABC的面积
【答案】
(1)
证明:∵AD是△ABC的角平分线,∴∠BAD=∠DAC,∵∠E=∠BAD,∴∠E=∠DAC,∵BE∥AD,∴∠E=∠EDA,∴∠EDA=∠DAC,∴ED∥AC
(2)
解:∵BE∥AD,∴∠EBD=∠ADC,∵∠E=∠DAC,∴△EBD∽△ADC,且相似比k==2,∴=k2=4,即s1=4s2,∵﹣16S2+4=0,
∴16﹣16S2+4=0,即=0,∴S2=,∵====3,∴S△ABC=
【解析】(1)由AD是△ABC的角平分线,得到∠BAD=∠DAC,由于∠E=∠BAD,等量代换得到∠E=∠DAC,根据平行线的性质和判定即可得到结果;
(2)由BE∥AD,得到∠EBD=∠ADC,由于∠E=∠DAC,得到△EBD∽△ADC,根据相似三角形的性质相似三角形面积的比等于相似比的平方即可得到结果.
【考点精析】掌握圆周角定理和相似三角形的判定与性质是解答本题的根本,需要知道顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
练习册系列答案
相关题目