题目内容
【题目】如图,在平面直角坐标系中,等腰Rt△ABC与等腰Rt△CDE关于原点O成位似关系,相似比为1:3,∠ACB=∠CED=90°,A、C、E是x轴正半轴上的点,B、D是第一象限的点,BC=2,则点D的坐标是( )
A.(9,6)B.(8,6)C.(6,9)D.(6,8)
【答案】A
【解析】
根据位似变换的定义得到△ACB∽△CED,根据相似三角形的性质求出DE,根据等腰直角三角形的性质求出CE,根据△OCB∽△OED,列出比例式,代入计算即可得到答案.
解:∵等腰Rt△ABC与等腰Rt△CDE关于原点O成位似关系,
∴△ACB∽△CED,
∵相似比为1:3,
∴,即 ,
解得,DE=6,
∵△CED为等腰直角三角形,
∴CE=DE=6,
∵BC∥DE,
∴△OCB∽△OED,
∴ ,即,
解得OC=3,
∴OE=OC+CE=3+6=9,
∴点D的坐标为(9,6),
故选:A.
练习册系列答案
相关题目