题目内容
(本小题满分12分)如图,两个同心圆的圆心是O,大圆的半径为13,小圆的半径为5,AD是大圆的直径.大圆的弦AB,BE分别与小圆相切于点C,F.AD,BE相交于点G,连接BD.
(1)求BD的长;
(2)求∠ABE+2∠D的度数;
(3)求的值.
(1)求BD的长;
(2)求∠ABE+2∠D的度数;
(3)求的值.
解:(1)连接OC,并延长BO交AE于点H,
∵AB是小圆的切线,C是切点,
∴OC⊥AB,
∴C是AB的中点.
∵AD是大圆的直径,
∴O是AD的中点.
∴OC是△ABD的中位线.
∴BD=2OC=10.
(2)连接AE,由(1)知C是AB的中点.
同理F是BE的中点.
由切线长定理得BC=BF.
∴BA=BE.
∴∠BAE=∠E.
∵∠E=∠D,
∴∠ABE+2∠D=∠ABE+∠E+∠BAE=180º.
(3)连接BO,在Rt△OCB中,
∵OB=13,OC=5,
∴BC=12.
由(2)知∠OBG=∠OBC=∠OAC.
∵∠BGO=∠AGB,
∴△BGO∽△AGB.
∴.
∵AB是小圆的切线,C是切点,
∴OC⊥AB,
∴C是AB的中点.
∵AD是大圆的直径,
∴O是AD的中点.
∴OC是△ABD的中位线.
∴BD=2OC=10.
(2)连接AE,由(1)知C是AB的中点.
同理F是BE的中点.
由切线长定理得BC=BF.
∴BA=BE.
∴∠BAE=∠E.
∵∠E=∠D,
∴∠ABE+2∠D=∠ABE+∠E+∠BAE=180º.
(3)连接BO,在Rt△OCB中,
∵OB=13,OC=5,
∴BC=12.
由(2)知∠OBG=∠OBC=∠OAC.
∵∠BGO=∠AGB,
∴△BGO∽△AGB.
∴.
略
练习册系列答案
相关题目