题目内容
【题目】如图l,BD是矩形ABCD的对角线,∠ABD=30,AD=1.将△BCD沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB’,C'D,AD’,BC’,如图2.
(1)求证:四边形AB'C'D是菱形:
(2)四边形ABC'D'的周长为____:
(3)将四边形ABC'D’沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出可能拼成的矩形的周长.
【答案】(1)证明见解析;(2)4;(2)3+2或6+
【解析】试题分析:(1)有一组邻边相等的平行四边形是菱形,据此进行证明即可;
(2)先判定四边形ABC'D'是菱形,再根据边长AB=AD=,即可得到四边形ABC'D′的周长为4;
(3)根据两种不同的拼法,分别求得可能拼成的矩形周长
试题解析:(1)∵BD是矩形ABCD的对角线,∠ABD=30°,
∴∠ADB=60°,
由平移可得,B'C'=BC=AD,∠D'B'C'=∠DBC=∠ADB=60°,
∴AD∥B'C'
∴四边形AB'C'D是平行四边形,
∵B'为BD中点,
∴Rt△ABD中,AB'=BD=DB',
又∵∠ADB=60°,
∴△ADB'是等边三角形,
∴AD=AB',
∴四边形AB'C'D是菱形;
(2)由平移可得,AB=C'D',∠ABD'=∠C'D'B=30°,
∴AB∥C'D',
∴四边形ABC'D'是平行四边形,
由(1)可得,AC'⊥B'D,
∴四边形ABC'D'是菱形,
∵AB=AD=,
∴四边形ABC'D′的周长为4,
(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形如下:
∴矩形周长为6+或2+3.
练习册系列答案
相关题目