题目内容
【题目】如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3s时,△BPQ的面积为____cm2.
【答案】18
【解析】
首先设AB为3xcm,BC为4xcm,AC为5xcm,利用方程求出三角形的三边,由勾股定理的逆定理得出三角形为直角三角形.再求出3秒后的,BP、BQ的长,利用三角形的面积公式计算求解.
解:设AB为3xcm,BC为4xcm,AC为5xcm,
∵周长为36cm,
AB+BC+AC=36cm,
∴3x+4x+5x=36,
解得x=3,
∴AB=9cm,BC=12cm,AC=15cm,
∵AB2+BC2=AC2,
∴△ABC是直角三角形,
过3秒时,BP=9-3×1=6(cm),BQ=2×3=6(cm),
∴S△PBQ=BPBQ=×(9-3)×6=18(cm2).
故答案为:18.
练习册系列答案
相关题目