题目内容
【题目】如图,长方形 BCDE 的各边分别平行于 x 轴或 y 轴,物体甲和物体乙分别由点 A(2,0)同时出发,沿长方形 BCDE 的边作环绕运动,物体甲按逆时针方向以 1 个单位/秒匀速运动,物体乙按顺时针方向以 2 个单位/秒匀速运动,则两个物体运动后的第 2020 次相遇地点的坐标是_____.
【答案】(-1,1)
【解析】
利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.
解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,相遇时,物体甲与物体乙的路程比为1:2,由题意知:
①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为,在BC边相遇,相遇地点的坐标是(-1,1);
②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为,在DE边相遇,相遇地点的坐标是(-1,-1);
③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为,在A点相遇,相遇地点的坐标是(2,0);
…
此时甲乙回到原出发点,则每相遇三次,两点回到出发点,
∵2020÷3=673…1,
故两个物体运动后的第2019次相遇地点的是点A,
所以第2020次相遇地点的坐标是(-1,1).
故答案为:(-1,1).
练习册系列答案
相关题目