题目内容

【题目】如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B、C两地相距120海里.
(1)求出此时点A到岛礁C的距离;
(2)若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)

【答案】
(1)

解:如图所示:延长BA,过点C作CD⊥BA延长线与点D,

由题意可得:∠CBD=30°,BC=120海里,

则DC=60海里,

故cos30°= =

解得:AC=40

答:点A到岛礁C的距离为40 海里.


(2)

解:如图所示 :过点A′作A′N⊥BC于点N,

可得∠1=30°,∠BA′A=45°,A′N=A′E,

则∠2=15°,即A′B平分∠CBA,

设AA′=x,则A′E= x,

故CA′=2A′N=2× x= x,

x+x=40

∴解得:x=20( ﹣1),

答:此时“中国海监50”的航行距离为20( ﹣1)海里.


【解析】(1)根据题意得出:∠CBD=30°,BC=120海里,再利用cos30°= ,进而求出答案;
    (2)根据题意结合已知得出当点B在A′的南偏东75°的方向上,则A′B平分∠CBA,进而得出等式求出答案.此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网