题目内容
【题目】如图的平面直角坐标系中有一个正六边形ABCDEF,其中C.D的坐标分别为(1,0)和(2,0).若在无滑动的情况下,将这个六边形沿着x轴向右滚动,则在滚动过程中,这个六边形的顶点A.B.C.D.E、F中,会过点(45,2)的是点 ▲ .
【答案】B。
【解析】分类归纳(图形的变化类),坐标与图形性质,正多边形和圆,旋转的性质。
∴正六边形滚动一周等于6。如图所示。
当正六边形ABCDEF滚动到位置1,2,3,4,5,6,7时,顶点A.B.C.D.E、F的纵坐标为2。
位置1时,点A的横坐标也为2。
又∵(45-2)÷6=7…1,
∴恰好滚动7周多一个,即与位置2顶点的纵坐标相同,此点是点B。
∴会过点(45,2)的是点B。
练习册系列答案
相关题目