题目内容
【题目】正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°
(1)当OM经过点A时,
①请直接填空:ON______(可能,不可能)过D点:(图1仅供分析)
②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,求证:四边形EFCH为正方形;
③如图2,将②中的已知与结论互换,即在ON上取点E(E点在正方形ABCD外部),过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,若四边形EFCH为正方形,那么OE与OA是否相等?请说明理由;
(2)当点O在射线BC上且OM不过点A时,设OM交边AB于G,且OG=2.在ON上存在点P,过P点作PK垂直于直线BC,垂足为点K,使得S△PKO=S△OBG,连接GP,则当BO为何值时,四边形PKBG的面积最大?最大面积为多少?
【答案】(1)①不可能②见解析③OA=OE(2)当BO为时,四边形PKBG的面积最大,最大面积为
【解析】
(1)①若ON过点D时,则在△OAD中不满足勾股定理,可知不可能过D点;
②由条件可先判业四边形EFCH为矩形,再证明△OFE≌△ABO,可证得结论;
③结论:OA=OE.如图2-1中,连接EC,在BA上取一点Q,使得BQ=BO,连接OQ.证明△AQO≌△OCE(ASA)即可.
(2)由条件可证明△PKO∽△OBG,利用相似三角形的性质可求得OP=2,可求得△POG面积为定值及△PKO和△OBG的关系,只要△CGB的面积有最大值时,则四边形PKBG的面积就最大,设OB=a,BG=b,由勾股定理可用b表示出a,则可用a表示出△OBG的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG面积的最大值.
(1)①若ON过点D,则OA>AB,OD>CD,
∴OA2>AD2,OD2>AD2,
∴OA2+OD2>2AD2≠AD2,
∴∠AOD≠90°,这与∠MON=90°矛盾,
∴ON不可能过D点,
故答案为:不可能;
②如图2中,∵EH⊥CD,EF⊥BC,
∴∠EHC=∠EFC=90°,且∠HCF=90°,
∴四边形EFCH为矩形,
∵∠MON=90°,
∴∠EOF=90°-∠AOB,
在正方形ABCD中,∠BAO=90°-∠AOB,
∴∠EOF=∠BAO,
在△OFE和△ABO中,
∴△OFE≌△ABO(AAS),
∴EF=OB,OF=AB,
又OF=CF+OC=AB=BC=BO+OC=EF+OC,
∴CF=EF,
∴四边形EFCH为正方形;
③结论:OA=OE.
理由:如图2-1中,连接EC,在BA上取一点Q,使得BQ=BO,连接OQ.
∵AB=BC,BQ=BO,
∴AQ=QC,
∵∠QAO=∠EOC,∠AQO=∠ECO=135°,
∴△AQO≌△OCE(ASA),
∴AO=OE.
(2)
∵∠POK=∠OGB,∠PKO=∠OBG,
∴△PKO∽△OBG,
∵S△PKO=S△OBG,
∴
∴OP=1,
∴S△POG=OGOP=×1×2=1,
设OB=a,BG=b,则a2+b2=OG2=4,
∴b=
∴
∴当a2=2时,△OBG有最大值1,此时S△PKO=S△OBG=,
∴四边形PKBG的最大面积为1+1+= .
∴当BO为时,四边形PKBG的面积最大,最大面积为.