题目内容
【题目】如图,在等腰中,.点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90得到EF.
(1)如图1,若,点E与点C重合,AF与DC相交于点O.求证:.
(2)已知点G为AF的中点.
①如图2,若,求DG的长.
②若,是否存在点E,使得是直角三角形?若存在,求CE的长;若不存在,试说明理由.
【答案】(1)见解析;(2)①,②存在,CE的长为:,2或,.
【解析】
(1)先证明CD=BD=AD,再证明,根据全等三角形的性质可得,由此即可证得结论;(2)①分别过点D,F作与点N,与点M,连接BF,先求得BF的长,再证明DG是△ABF的中位线,根据三角形的中位线定理即可求得DG的长;②分∠DEG=90°和∠EDG=90°两种情况求解即可.
解:(1)由旋转性质得:,
是等腰三角形,
,
在和中,
(2)①如图1,分别过点D,F作与点N,与点M,连接BF,
又,
,
又,,
,
点D,G分别是AB,AF的中点,
②过点D作与点H
,,
,
当时,有如图2,3两种情况,设,
,,
点E在线段AF上,
,,,
,,即,解得,
或,
当时,如图4,
图4
过点F作与点K,延长DG交AC于点N,延长AC并截取,连接FM,
则,,
设,则,,
,,,
,,得,
,,
四边形GECN是平行四边形,
∵,
四边形GECN是矩形, 当时,有
当时,如图5,
图5
过点G,F分别作AC的垂线,交射线AC于点N,M,过点E作于点K,过点D作GN的垂线,交NG的延长线于点P,则
设,则,
由可得:
,
由可得:
即
解得,(舍去)
所以,CE的长为:,2或,
【题目】一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:
销售单价x(元/kg) | 120 | 130 | … | 180 |
每天销量y(kg) | 100 | 95 | … | 70 |
设y与x的关系是我们所学过的某一种函数关系.
(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;
(2)当销售单价为多少时,销售利润最大?最大利润是多少?
【题目】某宾馆有若干间标准房,当标准房的价格为200元时,每天入住的房间数为60间,经市场调查表明,该宾馆每间标准房的价格在170~240元之间(含170元,240元)浮动时,每天入住的房间数(间)与每间标准房的价格(元)的数据如下表:
(元) | … | 190 | 200 | 210 | 220 | … |
(间) | … | 65 | 60 | 55 | 50 | … |
(1)根据所给数据在坐标系中描出相应的点,并画出图象.
(2)求关于的函数表达式、并写出自变量的取值范围.
(3)设客房的日营业额为(元).若不考虑其他因素,问宾馆标准房的价格定为多少元时.客房的日营业额最大?最大为多少元?