题目内容

【题目】两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,小詹在探究筝形的性质时,得到如下结论:

①AC⊥BD;②AO=CO;③△ABD≌△CBD.

其中正确的结论有(   )

A. 0个 B. 1个 C. 2个 D. 3个

【答案】D

【解析】

先根据“SSS”证明ABDCBD全等,再根据“SAS”证明AODCOD全等即可判断.

△ABD△CBD中,

AD=CDAB=BCDB=DB

∴△ABD≌△CBD(SSS),

正确;

∵△ABD≌△CBD

∴∠ADB=∠CDB

AODCOD中,

AD=CD,∠ADB=∠CDBOD=OD

∴△AOD≌△COD(SAS),

∴∠AOD=∠COD=90°,AO=OC

ACDB

①②正确;

故选D

练习册系列答案
相关题目

【题目】如图是某景区的环形游览路线ABCDA,已知从景点C到出口A的两条道路CBACDA均为1600米,现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形道路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车的速度均为200米/分,每一个游客的步行速度均为50米/分.

1)探究(填空):

①当两车行驶  分钟时,12号车第一次相遇,此相遇点到出口A的路程为   米;

②当1号车第二次恰好经过点C,此时两车行驶了   分钟,这一段时间内1号车与2号车相遇了   次.

2)发现:

若游客甲在BCK处(不与点CB重合)候车,准备乘车到出口A,在下面两种情况下,请问哪种情况用时较少(含候车时间)?请说明理由.

情况一:若他刚好错过2号车,便搭乘即将到来的1号车;

情况二:若他刚好错过1号车,便搭乘即将到来的2号车.

3)决策:

①若游客乙在DA上从D向出口A走去,游客乙从D出发时恰好2号车在C处,当步行到DA上一点P(不与AD重合)时,刚好与2号车相遇,经计算他发现:此时原地(P点)等候乘1号车到出口与直接从P步行到达出口A这两种方式,所花时间相等,请求出D点到出口A的路程.

②当游客丙逛完景点C后准备到出口A,此时2号车刚好在B点,已知BC路程为600米,请你帮助游客丙做一下决策,怎样到出口A所花时间最少,并说明理由.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网