题目内容

【题目】如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.
(1)求证:直线PA为⊙O的切线;
(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;
(3)若BC=6,tan∠F= ,求cos∠ACB的值和线段PE的长.

【答案】
(1)解:连接OB,

∵PB是⊙O的切线,

∴∠PBO=90°,

∵OA=OB,BA⊥PO于D,

∴AD=BD,∠POA=∠POB,

又∵PO=PO,

∴△PAO≌△PBO(SAS),

∴∠PAO=∠PBO=90°,

∴OA⊥PA,

∴直线PA为⊙O的切线


(2)解:EF2=4ODOP.

证明:∵∠PAO=∠PDA=90°

∴∠OAD+∠AOD=90°,∠OPA+∠AOP=90°,

∴∠OAD=∠OPA,

∴△OAD∽△OPA,

,即OA2=ODOP,

又∵EF=2OA,

∴EF2=4ODOP


(3)解:∵OA=OC,AD=BD,BC=6,

∴OD= BC=3(三角形中位线定理),

设AD=x,

∵tan∠F=

∴FD=2x,OA=OF=2x﹣3,

在Rt△AOD中,由勾股定理,得(2x﹣3)2=x2+32

解之得,x1=4,x2=0(不合题意,舍去),

∴AD=4,OA=2x﹣3=5,

∵AC是⊙O直径,

∴∠ABC=90°,

又∵AC=2OA=10,BC=6,

∴cos∠ACB= =

∵OA2=ODOP,

∴3(PE+5)=25,

∴PE=


【解析】(1)连接OB,根据垂径定理的知识,得出OA=OB,∠POA=∠POB,继而证明△PAO≌△PBO,然后利用全等三角形的性质结合切线的判定定理即可得出结论.(2)先证明△OAD∽△OPA,利用相似三角形的性质得出OA与OD、OP的关系,然后将EF=20A代入关系式即可.(3)根据题意可确定OD是△ABC的中位线,设AD=x,然后利用三角函数的知识表示出FD、OA,在Rt△AOD中,利用勾股定理解出x的值,继而能求出cos∠ACB,再由(2)可得 OA2=ODOP,代入数据即可得出PE的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网