题目内容

【题目】学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离(米)与时间(分钟)之间的函数关系如图所示.其中说法正确的是(

A.甲的速度是60/分钟B.乙的速度是80/分钟

C.的坐标为D.线段所表示的函数表达式为

【答案】D

【解析】

根据图象信息,甲60分钟行驶2400米,根据速度=路程÷时间可得甲的速度;由甲、乙两人的速度和为2400÷24=100/分钟,减去甲的速度得出乙的速度,再根据“路程、时间与速度”的关系解答即可;求出乙从图书馆回学校的时间即A点的横坐标,用A点的横坐标乘以甲的速度得出A点的纵坐标,再将AB两点的坐标代入,利用待定系数法即可求出线段AB所表示的函数表达式.

解:A、根据图象信息,甲的速度为2400÷60=40/分钟,故A选项错误;

B、∵甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,t=24分钟时甲乙两人相遇,

∴甲、乙两人的速度和为2400÷24=100/分钟,

∴乙的速度为100-40=60/分钟,B选项错误;

C、乙从图书馆回学校的时间为2400÷60=40分钟,

40×40=1600

A点的坐标为(401600),故C选项错误;

D、设线段AB所表示的函数表达式为y=kt+b

A401600),B602400),

解得:

∴线段所表示的函数表达式为,故D选项正确;

故选D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网