题目内容
【题目】学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离(米)与时间(分钟)之间的函数关系如图所示.其中说法正确的是( )
A.甲的速度是60米/分钟B.乙的速度是80米/分钟
C.点的坐标为D.线段所表示的函数表达式为
【答案】D
【解析】
根据图象信息,甲60分钟行驶2400米,根据速度=路程÷时间可得甲的速度;由甲、乙两人的速度和为2400÷24=100米/分钟,减去甲的速度得出乙的速度,再根据“路程、时间与速度”的关系解答即可;求出乙从图书馆回学校的时间即A点的横坐标,用A点的横坐标乘以甲的速度得出A点的纵坐标,再将A、B两点的坐标代入,利用待定系数法即可求出线段AB所表示的函数表达式.
解:A、根据图象信息,甲的速度为2400÷60=40米/分钟,故A选项错误;
B、∵甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,t=24分钟时甲乙两人相遇,
∴甲、乙两人的速度和为2400÷24=100米/分钟,
∴乙的速度为100-40=60米/分钟,B选项错误;
C、乙从图书馆回学校的时间为2400÷60=40分钟,
40×40=1600,
∴A点的坐标为(40,1600),故C选项错误;
D、设线段AB所表示的函数表达式为y=kt+b,
∵A(40,1600),B(60,2400),
∴,
解得:,
∴线段所表示的函数表达式为,故D选项正确;
故选D.
【题目】蔬菜基地种植了娃娃菜和油菜两种蔬菜共亩,设种植娃娃菜亩,总收益为万元,有关数据见下表:
成本(单位:万元/亩) | 销售额(单位:万元/亩) | |
娃娃菜 | 2.4 | 3 |
油菜 | 2 | 2.5 |
(1)求关于的函数关系式(收益 = 销售额 – 成本);
(2)若计划投入的总成本不超过万元,要使获得的总收益最大,基地应种植娃娃菜和油菜各多少亩?
(3)已知娃娃菜每亩地需要化肥kg,油菜每亩地需要化肥kg,根据(2)中的种植亩数,基地计划运送所需全部化肥,为了提高效率,实际每次运送化肥的总量是原计划的倍,结果运送完全部化肥的次数比原计划少次,求基地原计划每次运送多少化肥.