题目内容
【题目】如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.
(1)旋转中心是点 , 旋转角度是度;
(2)若连结EF,则△AEF是三角形;并证明;
(3)若四边形AECF的面积为25,DE=2,求AE的长.
【答案】
(1)A;90
(2)等腰直角
(3)
解:由题意得:△ADE≌△ABF,
∴S四边形AECF=S正方形ABCD=25,
∴AD=5,而∠D=90°,DE=2,
∴ .
【解析】 解:(1)如图,由题意得:旋转中心是点A,旋转角度是90度.故答案为A、90.(2)由题意得:AF=AE,∠EAF=90°,∴△AEF为等腰直角三角形.故答案为等腰直角.
(1)根据旋转变换的定义,即可解决问题.(2)根据旋转变换的定义,即可解决问题.(3)根据旋转变换的定义得到△ADE≌△ABF,进而得到S四边形AECF=S正方形ABCD=25,求出AD的长度,即可解决问题.
练习册系列答案
相关题目