题目内容
【题目】如图,AB为⊙O的直径,点D,E为⊙O上的两个点,延长AD至C,使∠CBD=∠BED.
(1)求证:BC是⊙O的切线;
(2)当点E为弧AD的中点且∠BED=30°时,⊙O半径为2,求DF的长度.
【答案】
(1)证明:∵AB为⊙O的直径,
∴∠ADB=90°,
∴∠A+∠DBA=90°,
∵ = ,
∴∠A=∠E,
∵∠CBD=∠E,
∴∠CBD=∠A,
∴∠CBD+∠DBA=90°,
∴AB⊥BC,
∴BC是⊙O的切线,
(2)解:∵∠BED=30°,
∴∠A=∠E=∠CBD=30°,
∴∠DBA=60°,
∵点E为弧AD的中点,
∴∠EBD=∠EBA=30°,
∵⊙O半径为2,
∴AB=4,BD=2,AD=2 ,
在Rt△BDF中,∠DBF=90°,
tan∠DBF= = ,
∴DF= .
【解析】(1)由AB为⊙O的直径,得到∠ADB=90°,根据圆周角定理得到∠A=∠E,得到AB⊥BC,于是得到结论;(2)根据圆周角定理得到∠A=∠E=∠CBD=30°,进而得到∠DBA=60°,根据三角函数的定义即可得出结论。
【考点精析】掌握圆周角定理和锐角三角函数的定义是解答本题的根本,需要知道顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半;锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数.
练习册系列答案
相关题目