题目内容
【题目】如图1,在平面直角坐标系中点A、B在坐标轴上,其中A(0,a),B(b,0),满足|a﹣3|+=0.
(1)求点A、B的坐标;
(2)将AB平移到CD,点A对应点C(﹣2,m),若△ABC面积为13,连接CO,求点C的坐标;
(3)在(2)的条件下,求证:∠AOC=∠OAB+∠OCD;
(4)如图2,若AB∥CD,点C、D也在坐标轴上,点F为线段AB上一动点(不包含A、B两点),连接OF,FP平分∠BFO,∠BCP=2∠PCD,试证明:∠COF=3∠P﹣∠OFP(提示:可直接利用(3)的结论).
【答案】(1)A(0,3),B(4,0);(2)C(﹣2,﹣2);(3)详见解析;(4)详见解析.
【解析】
(1)利用非负数的性质求解即可.
(2)如图1中,分别过点B,A作x轴,y轴的垂线交于点M,过点C作CN⊥AM于N.根据S△ABC=S四边形MNCB﹣S△ABM﹣S△ACN构建方程求解即可.
(3)利用平行线的性质,三角形的外角的性质求解即可.
(4)如图2中,延长AB交CP的延长线于M.首先证明∠BCD=3(∠CPF﹣∠OFP),再利用结论∠FOC=∠OFB+∠BCD,求解即可.
解:(1)∵|a﹣3|+=0,
又∵|a﹣3|≥0,≥0,
∴a=3,b=4,
∴A(0,3),B(4,0).
(2)如图1中,分别过点B,A作x轴,y轴的垂线交于点M,过点C作CN⊥AM于N.
∵S△ABC=S四边形MNCB﹣S△ABM﹣S△ACN,
∴13=(3+3﹣m)(4+2)﹣×2×(3﹣m)﹣×3×4,
解得:m=﹣2,
∴C(﹣2,﹣2).
(3)如图1中,设CD交y轴于T.
∵AB∥CD,
∠BAO=∠ATO,
∵∠AOC=∠OCD+∠CTO,
∴∠AOC=∠OCD+∠BAO.
(4)如图2中,延长AB交CP的延长线于M.
∵AM∥CD,
∴∠DCM=∠M,
∵∠BCP=2∠PCD,
∴∠BCD=3∠DCM=3∠M,
∵∠M=∠FPC﹣∠MFP,∠MFP=∠OFP,
∴∠BCD=3(∠CPF﹣∠OFP),
∵∠FOC=∠OFB+∠BCD,
∴∠FOC=2∠OFP+3∠CPF﹣3∠OFP,
∴∠FOC=3∠CPF﹣∠OFP.
【题目】如图,AB为⊙O的直径,点D,E为⊙O上的两个点,延长AD至C,使∠CBD=∠BED.
(1)求证:BC是⊙O的切线;
(2)当点E为弧AD的中点且∠BED=30°时,⊙O半径为2,求DF的长度.
【题目】某水果店计划进A,B两种水果共140千克,这两种水果的进价和售价如表所示
进价元千克 | 售价元千克 | |
A种水果 | 5 | 8 |
B种水果 | 9 | 13 |
若该水果店购进这两种水果共花费1020元,求该水果店分别购进A,B两种水果各多少千克?
在的基础上,为了迎接春节的来临,水果店老板决定把A种水果全部八折出售,B种水果全部降价出售,那么售完后共获利多少元?