题目内容
【题目】如图,CD是△ABC的角平分线,△ABC的面积为12,BC长为6,点E,F分别是CD,AC上的动点,则AE+EF的最小值是( )
A.6B.4C.3D.2
【答案】B
【解析】
根据轴对称的性质得出AE+EF=HE+EF,再根据点到直线的距离垂线段最短得出当HF⊥AC时,HE+EF最小为HF,再根据三角形面积公式计算出AG,根据AH=AG即可得出结论.
解:作A关于CD的对称点H,
∵CD是△ABC的角平分线,
∴点H一定在BC上,且AE+EF=HE+EF
过H作HF⊥AC于F,交CD于E,
则此时,AE+EF的值最小,AE+EF的最小值=HF,
过A作AG⊥BC于G,
∵△ABC的面积为12,BC长为6,
∴AG=4,
∵CD垂直平分AH,
∴AC=CH,
∴S△ACH=ACHF=CHAG,
∴HF=AG=4,
∴AE+EF的最小值是4,
故选:B.
练习册系列答案
相关题目