题目内容

【题目】如图,的角平分线交点,外角平分线交点,则___________,联结,则______,点____(选填“在”、“不在”或“不一定在)直线上.

【答案】116 64 26

【解析】

ABC+ACB=180°-A,∠OBC+OCB= (∠ABC+ACB, BOC=180°-(∠OBC+OCB),据此可求∠BOC的度数;

BCP= BCE= (∠A+ABC),∠PBC= CBF= (∠A+ACB),由三角形内角和定理得:∠BPC=180°-BCP-PBC,据此可求∠BPC的度数;

PGABGPHACHPKBCK,利用角平分线的性质定理可证明PG=PH,于是可证得AP平分∠BAC,据此可求∠PAB的度数;

同理可证OA平分∠BAC,故点在直线上.

解:∵O点是∠ABC和∠ACB的角平分线的交点,
∴∠OBC+OCB= (∠ABC+ACB

= 180°-A

=90°- A
∴∠BOC=180°-(∠OBC+OCB

=180°-90°+ A

=90°+ A

=90°+26°

=116°

如图,

∵BPCP△ABC两外角的平分线,
∴∠BCP= BCE= (∠A+ABC),

PBC= CBF= (∠A+ACB),
由三角形内角和定理得:
BPC=180°-BCP-PBC
=180°- [A+(∠A+ABC+ACB]
=180°- img src="http://thumb.zyjl.cn/questionBank/Upload/2020/11/27/11/a71e7e8e/SYS202011271140551445817129_DA/SYS202011271140551445817129_DA.001.png" width="16" height="41" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />(∠A+180°
=90°- A

=90°-26°

=64°

如图,作PGABGPHACHPKBCK,连接AP

∵BPCP△ABC两外角的平分线,PGABPHACPKBC

PG=PKPK=PH

PG=PH

AP平分∠BAC

26°

同理可证OA平分∠BAC

在直线上.

故答案是:(1) 116 (2) 64(3) 26(4) .

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网