题目内容

【题目】如图,AB=BC=2,∠ABC=90°,以AB为直径的⊙OOC于点DAD的延长线交BC于点E,则BE的长为______

【答案】-1

【解析】

先根据已知和勾股定理得出CD的长,再根据直径所对的圆周角为直角和等腰三角形的性质证得∠CDE=CBD,然后根据两角对应相等两三角形相似得出CDE∽△CBD,可得比例式,从而得到CD2=CECB,求得CE即可解决问题.

解:连接BD

∵∠CBO=90°BC=2OB=1
OC=
CD=OC-OD=-1

AB是直径,
∴∠ADB=EDB=90°
∴∠CDE+ODB=90°
OD=OB
∴∠ODB=OBD
∵∠CBD+OBD=90°
∴∠CDE=CBD
∵∠DCE=BCD
∴△CDE∽△CBD
CD2=CECB
CE=3-
BE=BC-CE=-1
故答案为-1

练习册系列答案
相关题目

【题目】问题提出:求n个相同的长方体(相邻面的面积不相同)摆放成一个大长方体的表面积.

问题探究:探究一:

为了研究这个问题,同学们建立了如下的空间直角坐标系:空间任意选定一点O,以点O为端点,作三条互相垂直的射线oxoyoz.这三条互相垂直的射线分别称作x轴、y轴、z轴,统称为坐标轴,它们的方向分别为ox(水平向前)、oy(水平向右)、oz(竖直向上)方向.

将相邻三个面的面积记为S1S2S3,且S1S2S3的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体S1所在的面与x轴垂直,S2所在的面与y轴垂直,S3所在的面与z轴垂直,如图1所示.

若将x轴方向表示的量称为几何体码放的排数,y轴方向表示的量称为几何体码放的列数,z轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标系内码放的一个几何体,其中这个几何体共码放了126层,用有序数组记作(126),如图3的几何体码放了234层,用有序数组记作(234).这样我们就可用每一个有序数组(xyz)表示一种几何体的码放方式.

问题一:如图4是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为______

组成这个几何体的单位长方体的个数为______个.

探究二:

为了探究有序数组(xyz)的几何体的表面积公式Sxyz,同学们针对若干个单位长方体进行码

放,制作了下列表格

几何体

有序数组

单位长方体的个数

表面上面积为S1的个数

表面上面积为S2的个数

表面上面积为S3的个数

表面积

111

1

2

2

2

2S1+2S2+2S3

121

2

4

2

4

4S1+2S2+4S3

311

3

2

6

6

2S1+6S2+6S3

212

4

4

8

4

4S1+8S2+4S3

151

5

10

2

10

10S1+2S2+10S3

123

6

……

……

……

……

……

……

问题二:请将上面表格补充完整:当单位长方体的个数是6时,表面上面积为S1的个数是______

表面上面积为S2的个数是______;表面上面积为S3的个数是______;表面积为______

问题三:根据以上规律,请写出有序数组(xyz)的几何体表面积计算公式Sxyz=______(用xyzS1S2S3表示)

探究三:

同学们研究了当S1=2S2=3S3=4时,用3个单位长方体码放的几何体中,有三种码放的方法,有序数组分别为(113),(131),(311).而S113=38S131=42S311=46.容易发现个数相同的长方体,由于码放的方法不同,组成的几何体的表面积就不同.

拓展应用:

要将由20个相同的长方体码放的几何体进行打包,其中每个长方体的长是8,宽是5,高是6.为了节约外包装材料,请直接写出使几何体表面积最小的有序数组,并写出这个最小面积(不需要写解答过程).(缝隙不计)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网