题目内容

【题目】如图,在等边ABC中,边长为6DBC边上的动点,∠EDF=60°

1)求证:BDE∽△CFD

2)当BD=1CF=3时,求BE的长.

【答案】(1)证明见解析;(2)

【解析】试题分析:

1)由题意可得,∠B=∠C=60°∠BDE+∠CDF=120°∠BDE+∠BED=120°由此可得:∠CDF=∠BED,从而可得:△BDE∽△CFD

2)由△BDE∽△CFD可得: 由已知易得CD=BC-BD=5-1=4,由此可得: 解得BE=.

试题解析

(1)∵△ABC是等边三角形,

∴∠B=∠C=60°

∴∠BDE+∠BED=120°.

∵∠EDF=60°

∴∠BDE+∠CDF=120°

∴∠CDF=∠BED

∴△BDE∽△CFD

2)∵等边△ABC的边长为5,BD=1,

∴CD=BC-BD=4.

△BDE∽△CFD

BE=.

练习册系列答案
相关题目

【题目】已知x1x2是关于x的一元二次方程x22(m1)xm250的两实根.

(1)(x11)(x21)28,求m的值;

(2)已知等腰△ABC的一边长为7,若x1x2恰好是△ABC另外两边的边长,求这个三角形的周长.

【答案】(1)m的值为6;(2)17.

【解析】试题分析

1)由题意和根与系数的关系可得:x1x22(m1)x1x2m25(x11)(x21)28,可得x1x2(x1x2)27从而得到m252(m1)27,解方程求得m的值再由“一元二次方程根的判别式”进行检验即可得到m的值;

27为腰长时,则方程的两根中有一根为7,代入方程可解得m的值(此时m的取值需满足根的判别式 ),将m的值代入原方程,可求得两根(此时两根和7需满足三角形三边之间的关系),从而可求得等腰三角形的周长;

7为底边时,则方程的两根相等,由此可得“根的判别式△=0”,从而可得关于m的方程,解方程求得m的值,代入原方程可求得方程的两根,再由三角形三边之间的关系检验即可.

试题解析

(1)(x11)(x21)28,即x1x2(x1x2)27,而x1x22(m1)x1x2m25

∴m252(m1)27

解得m16m2=-4

又Δ=[2(m1)]24×1×(m25)≥0时,m≥2

∴m的值为6; 

(2) 7为腰长,则方程x22(m1)xm250的一根为7

722×7×(m1)m250

解得m110m24

m10时,方程x222x1050,根为x115x27,不符合题意,舍去.

m4时,方程为x210x210,根为x13x27,此时周长为77317 

7为底边,则方程x22(m1)xm250有两等根,

∴Δ0,解得m2,此时方程为x26x90,根为x13x2333<7,不成立,

综上所述,三角形周长为17

点睛:(1)一元二次方程根与系数的关系成立的前提条件是方程要有实数根,即“根的判别式△ ”;(2)涉及三角形边长的问题中,解得的结果都需要用“三角形三边之间的关系”检验,看三条线段能否围成三角形.

型】解答
束】
21

【题目】如图,已知在△ABC中,DAB的中点,且∠ACD=∠B,若 AB=10,求AC的长.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网