题目内容

【题目】综合与探究

数学课上,老师让同学们利用三角形纸片进行操作活动,探究有关线段之间的关系.

问题情境:

如图1,三角形纸片ABC中,∠ACB90°ACBC.将点C放在直线l上,点AB位于直线l的同侧,过点AADl于点D.

初步探究:

(1)在图1的直线l上取点E,使BEBC,得到图2.猜想线段CEAD的数量关系,并说明理由;

变式拓展:

(2)小颖又拿了一张三角形纸片MPN继续进行拼图操作,其中∠MPN90°MPNP.小颖在图 1 的基础上,将三角形纸片MPN的顶点P放在直线l上,点M与点B重合,过点NNHl于点 H.

请从下面 AB 两题中任选一题作答,我选择_____.

A.如图3,当点N与点M在直线l的异侧时,探究此时线段CPADNH之间的数量关系,并说明理由.

B.如图4,当点N与点M在直线l的同侧,且点P在线段CD的中点时,探究此时线段CDADNH之间的数量关系,并说明理由.

【答案】(1)CE2AD(2)A题:CPAD+NHB题:NHCD+AD.

【解析】

(1) 过点BBFl于点F,通过已知条件证得ACDCBF,再通过等腰三角形性质即可求解.

(2) ①过点BBFl于点F,通过已知条件ACDCBF证得BFPPHN,即可得出边边之间关系.

②过点BBFl于点F,通过已知条件ACDCBF证得BFPPHN,再通过边边转化即可求解.

(1)CE2AD,理由如下:

过点BBFl于点F,易得∠CFB90°

ADl

∴∠ADC90°,∠CAD+DCA90°

∴∠ADC=∠CFB

∵∠ACB90°

∴∠DCA+BCF90°

∴∠CAD=∠BCF

在△ACD和△CBF

∴△ACDCBF(AAS)

ADCF

BEBCBFl

CFEF

CE2CF2AD

(2)A.CPAD+NH,理由如下:

过点BBFl于点F,易得∠BFP90°

(1)可得:△ACDCBF

ADCF

NHl

∴∠PHN90°,∠HNP+HPN90°

∴∠BFP=∠PHN

∵∠MPN90°

∴∠HPN+FPB90°

∴∠HNP=∠FPB

在△BFP和△PHN

∴△BFPPHN(AAS)

NHPF

CPCF+PF

CPAD+NH

B.NHCD+AD,理由如下:

过点BBFl于点F,易得∠BFC90°

(1)可得:△ACDCBF

ADCF

NHl

∴∠PHN90°,∠HNP+HPN90°

∴∠BFP=∠PHN

∵∠MPN90°

∴∠HPN+FPB90°

∴∠HNP=∠FPB

在△BFP 和△PHN

∴△BFPPHN(AAS)

NHPF

∵点P在线段CD的中点

CPDPCD

由图得:PFPC+CF

NHCD+AD

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网