题目内容
【题目】如图,已知梯形ABCD中,AD∥BC,AC、BD相交于点O,AB⊥AC,AD=CD,AB=3,BC=5.求:
(1)tan∠ACD的值;
(2)梯形ABCD的面积.
【答案】(1);(2)9
【解析】
(1)作DE∥AB交BC于E,交AC于M,证出DE⊥AC,由等腰三角形的性质得出AM=CM,证明四边形ABCD是平行四边形,得出DE=AB=3,在Rt△ABC中,由勾股定理求出AC=4,得出AM=CM=2,由平行线分线段成比例可得出DM与EM,即可求出答案
(2)梯形ABCD的面积=△ABC的面积+△ACD的面积,即可求出答案
(1)作DE∥AB交BC于E,交AC于M,如图所示:
∵AB⊥AC,DE∥AB,
∴DE⊥AC,
∵AD=CD,
∴AM=CM,
∵AD∥BC,DE∥AB,
∴四边形ABED是平行四边形,
∴DE=AB=3,
在Rt△ABC中, ,
∴AM=CM=2,
∵AD∥BC,
∴DM:EM=AM:CM=1:1,
∴,
∴;
(2)梯形ABCD的面积=△ABC的面积+△ACD的面积.
练习册系列答案
相关题目