题目内容
【题目】如图,△ABC的边AB是⊙O的直径,点C在⊙O上,已知AC=6cm,BC=8cm,点P、Q分别在边AB、BC上,且点P不与点A、B重合,BQ=kAP(k>0),联接PC、PQ.
(1)求⊙O的半径长;
(2)当k=2时,设AP=x,△CPQ的面积为y,求y关于x的函数关系式,并写出定义域;
(3)如果△CPQ与△ABC相似,且∠ACB=∠CPQ,求k的值.
【答案】(1)5;(2)y=;(3)
【解析】
(1)首先证明∠ACB=90°,然后利用勾股定理即可解决问题;
(2)如图2中,作PH⊥BC于H.由PH∥AC,,推出,推出
,得出
,根据
计算即可;
(3)因为△CPQ与△ABC相似,∠CPQ=∠ACB=90°,又因为∠CQP>∠B,
所以只有∠PCB=∠B,推出PC=PB,由∠B+∠A=90°,∠ACP+∠PCB=90°,
推出∠A=∠ACP,得出PA=PC=PB=5,由△COQ∽△BCA,推出,
推出,即可解决问题.
(1)∵AB是直径,
∴∠ACB=90°,∵AC=6,BC=8,
∴,
∴⊙O的半径为5.
(2)如图2中,作PH⊥BC于H.
∵PH∥AC,
∴,
∴,
∴,
∴.
(3)如图2中,
∵△CPQ与△ABC相似,∠CPQ=∠ACB=90°,
又∵∠CQP>∠B,
∴只有∠PCB=∠B,
∴PC=PB,
∵∠B+∠A=90°,∠ACP+∠PCB=90°,
∴∠A=∠ACP,
∴PA=PC=PB=5,
∴△COQ∽△BCA,
∴,
∴,
∴.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某校为庆祝“五四青年节”,在2018年4月底组织该校学生举办了“传承五四精神共建和谐社土会”的演讲比赛.为了解学生在演讲比赛中的成绩情况,学校随机抽取了部分学生的演讲比赛成绩进行统计(满分:100分,等次:A.优秀:90~100分;B.良好:80﹣89分;C.一般:60﹣79分;D.较差:60分以下,不含60分)得到如下不完整的图表:
等次 | 频数 | 频率 |
A | a | 0.25 |
B | b | 0.5 |
C | 3 | m |
D | 2 | 0.1 |
根据以上信息解答下列问题
(1)表中a=_____,b=_____,m=_______,并补全频数分布直方图;
(2)根据抽查学生演讲成绩频数统计表制作的扇形统计图中,表示C等次部分的扇形中心角的度数是_______;
(3)若A等次中有2名女生,其余为男生,学校准备从A等次学生中抽取2名学生组成演讲组合参加全市“五四青年杯”演讲比赛,求恰好抽取1名男生和1名女生的概率.