题目内容
【题目】如图,现有一个均匀的转盘被平均分成6等份,分别标有数字2、3、4、5、6、7这六个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字.求:
(1)转动转盘,转出的数字大于3的概率是多少?
(2)现有两张分别写有3和4的卡片,要随机转动转盘,转盘停止后记下转出的数字,与两张卡片上的数字分别作为三条线段的长度.这三条线段能构成三角形的概率是多少?
【答案】(1);(2).
【解析】
(1)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,大于3的结果有4种,由概率公式可得;
(2)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成三角形的结果有5种,由概率公式可得;
(1)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种等可能的结果,大于3的结果有4种,
∴转出的数字大于3的概率是.
(2)①转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能构成三角形的结果有5种,
∴这三条线段能构成三角形的概率是.
练习册系列答案
相关题目
【题目】下表给出了代数式﹣x2+bx+c与x的一些对应值:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
﹣x2+bx+c | … | 5 | n | c | 2 | ﹣3 | ﹣10 | … |
(1)根据表格中的数据,确定b,c,n的值;
(2)设y=﹣x2+bx+c,直接写出0≤x≤2时y的最大值.
【题目】观察下面图形,解答下列问题:
(1)在上面第四个图中画出六边形的所有对角线;
(2)观察规律,把下表填写完整:
边数 | 三 | 四 | 五 | 六 | 七 | …… | n |
对角线 条数 | 0 | 2 | 5 | …… |
(3)若一个多边形的内角和为 1440°,求这个多边形的边数和对角线的条数.