题目内容
【题目】如图,在ABCD中,AH∥CG,且分别交对角线BD于H、G,连接CH和AG,求证:∠CHG=∠AGH.
【答案】证明见解析.
【解析】
根据题意由AH∥CG得∠AHD=∠CGB,再由四边形ABCD是平行四边形知AD∥BC且AD=BC,据此得∠ADH=∠CBG,从而证△ADH≌△CBG得AH=CG,结合AH∥CG知四边形AHCG是平行四边形,继而得CH∥AG,由平行线的性质可得答案.
解:∵AH∥CG,
∴∠AHG=∠CGH,
∴180°﹣∠AHG=180°﹣∠CGH,即∠AHD=∠CGB.
∵四边形ABCD是平行四边形,
∴AD∥BC,且AD=BC,
∴∠ADH=∠CBG,
∴△ADH≌△CBG(AAS),
∴AH=CG,
∵AH∥CG,
∴四边形AHCG是平行四边形,
∴CH∥AG,
∴∠CHG=∠AGH.
练习册系列答案
相关题目
【题目】某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减 | +5 | -2 | -4 | +13 | -10 | +16 | -9 |
(1)根据记录的数据可知该厂星期四生产自行车多少辆;
(2)根据记录的数据可知该厂本周实际生产自行车多少辆;