题目内容
【题目】如图1,在正方形ABCD内有一点P,PA=3,PB=2,PC=1,求∠BPC的度数.
分析:根据已知条件比较分散的特点,我们可以通过旋转变换将分散的已知条件集中在一起,于是将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连结PP′,这时再分别求出∠BP′P和∠AP′P的度数.
解答:(1)请你根据以上分析再通过计算求出图2中∠BPC的度数;
(2)如图3,若在正六边形ABCDEF内有一点P,且PA=2,PB=4,PC=2,求∠BPC的度数.
【答案】(1)135°;(2)120°.
【解析】试题分析:(1)根据旋转的性质得到∠P′BP=90°,BP′=BP=2 ,P′A=PC=1,∠BP′A=∠BPC,则△BPP′为等腰直角三角形,根据等腰直角三角形的性质得PP′= ,PB=2,∠BP′P=45°,利用勾股定理的逆定理可得到△APP′为直角三角形,且∠AP′P=90°,则∠BPC=∠BP′A=45°+90°=135°;(2)把△BPC绕点B逆时针旋转120°,得到了△BP′A,根据旋转的性质得到∠P′BP=120°,BP′=BP=4,P′A=PC=2,∠BP′A=∠BPC,则∠BP′P=∠BPP′=30°,得到P′H=PH,利用含30°的直角三角形三边的关系得到BH= BP′=2,P′H= BH=2 ,得到P′P=2P′H=4,再利用勾股定理的逆定理可得到△APP′为直角三角形,且∠AP′P=90°,于是有∠BPC=∠BP′A=30°+90°=120°.
试题解析:
(1)如图2.
∵△BPC绕点B逆时针旋转90°,得到了△BP′A,
∴∠P′BP=90°,BP′=BP=2 ,P′A=PC=1,∠BP′A=∠BPC,
∴△BPP′为等腰直角三角形,
∴PP′=
PB=2,∠BP′P=45°,
在△APP′中,AP=3
,PP′=2,AP′=1,
∵32=(2)2+12,
∴AP2=PP′2+AP′2,
∴△APP′为直角三角形,且∠AP′P=90°
∴∠BP′A=45°+90°=135°,
∴∠BPC=∠BP′A=135°;
(2)如图3.
∵六边形ABCDEF为正六边形,
∴∠ABC=120°,
把△BPC绕点B逆时针旋转120°,得到了△BP′A,
∴∠P′BP=120°,BP′=BP=4,P′A=PC=2,∠BP′A=∠BPC,
∴∠BP′P=∠BPP′=30°,
过B作BH⊥PP′于H,
∵BP′=BP,
∴P′H=PH,
在Rt△BP′H中,∠BP′H=30°,BP′=4,
∴BH=BP′=2,P′H=BH=2,
∴P′P=2P′H=4,
在△APP′中,AP=2,PP′=4,AP′=2,
∵(2)2=(4)2+22,
∴AP2=PP′2+AP′2,
∴△APP′为直角三角形,且∠AP′P=90°,
∴∠BP′A=30°+90°=120°,
∴∠BPC=120°.