题目内容
【题目】如图,A,O,B三点在同一直线上,∠BOD与∠BOC互补.
(1)试判断∠AOC与∠BOD之间有怎样的数量关系,写出你的结论,并加以证明;
(2)OM平分∠AOC,ON平分∠AOD,①依题意,将备用图补全;
② 若∠MON=40°,求∠BOD的度数.
【答案】(1)∠AOC =∠BOD ;(2)①答案见解析;②∠BOD =50°.
【解析】试题分析:(1)根据同角的补角相等即可得出结论;
(2)①根据题意画出图形;
②由角平分线的定义和平角的定义解答即可.
试题解析:解:(1)∠AOC =∠BOD .理由如下:
∵ 点A,O,B三点在同一直线上, ∴ ∠AOC +∠BOC = 180°.
∵∠BOD与∠BOC互补,∴ ∠BOD +∠BOC = 180°,∴ ∠AOC =∠BOD.
(2)①补全图形,如图所示.
②设∠AOM =α.
∵ OM平分∠AOC,∴ ∠AOC =2∠AOM =2α.
∵ ∠MON=40°,∴ ∠AON =∠MON +∠AOM =40°+ α.
∵ ON平分∠AOD,∴ ∠AOD =2∠AON =80° +2α.
由(1)可得 ∠BOD=∠AOC=2α,∵∠BOD +∠AOD =180°,∴ 2α+ 80 +2α=180°,∴ 2α=50°,∴ ∠BOD =50°.
练习册系列答案
相关题目