题目内容
【题目】已知AP是△ABC的外角平分线,连结PB、PC.
(1)如图1①若BP平分∠ABC,且∠ACB=28°,求∠APB的度数.
②若P与A不重合,请判断AB+AC与PB+PC的大小关系,并证明你的结论.
(2)如图2,若过点P作PM⊥BA,交BA的延长线于M点,且∠BPC=∠BAC,求:的值.
【答案】(1)①14°;②PB+PC>AB+AC,证明见解析;(2)
【解析】
(1)根据三角形的角平分线的定义和三角形外角的性质即可得到结论;
(2)在射线AD上取一点H,是的AH=AC,连接PH.则△APH≌△APC,根据三角形的三边关系即可得到结论.
(3)过P作PN⊥AC于N,根据角平分线的性质得到PM=PN,根据全等三角形的性质得到AM=AN,BM=CN,于是得到结论.
解:(1)①∵AP平分∠DAC,PB平分∠ABC,
∴∠DAP=∠DAC,∠ABP=∠ABC,
∵∠DAC=∠ABC+∠ACB,∠DAP=∠ABP+∠APB,
∴∠APB=∠DAP﹣∠ABP=∠DAC﹣∠ABC=∠ACB=14°;
②PB+PC>AB+AC.
理由如下:
如图1﹣1,在射线AD上取一点H,使AH=AC,连接PH.
∵AC=AH,∠PAD=∠PAC,AP=AP,
∴△APH≌△APC(SAS),
∴PC=PH,
在△BPH中,PB+PH>BH,
∴PB+PC>AB+AC.
(2)过点P作PN⊥AC于N,
∵AP平分∠MAN,PM⊥BA,
∴PM=PN,
在Rt△APM与Rt△APN中,
,
∴Rt△APM≌Rt△APN(HL),
∴AM=AN,
∵∠BAC=∠BPC,
∴由“8字形”得:∠MBP=∠PCN,
在△PMB与△PNC中,
,
∴△PMB≌△PNC(AAS)
∴BM=CN,
∵AM=AN,
∴AC﹣AB=2AM,
∴==
练习册系列答案
相关题目