题目内容
【题目】如图,Rt△ABO中,∠AOB=90°,点A在第一象限,点B在第二象限,且AO:BO=1:2,若经过点A的反比例函数解析式为y=,则经过点B(x,y)的反比例函数解析式为( )
A. B. C. D.
【答案】C
【解析】
过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,可证明△AOC∽△OBD,由点A在y=上,可求得△AOC的面积,由相似三角形的性质可求得△BOD的面积,可求得答案.
如图,过A作AC⊥x轴,过B作BD⊥x轴,垂足分别为C.D,
∵∠AOB=90°,
∴∠BOD+∠AOC=∠DBO+∠BOD,
∴∠DBO=∠AOC,
∴△AOC∽△OBD,
∴,
设A点坐标为(xA,yA),
∵点A在函数y=的图象上,
∴xAyA=1,
∴=xAyA=,
∴=4=2,
设B点坐标为(xB,yB),
∴xByB=2,
∴xByB=4,
∴过B点的反比例函数的解析式为y=,
故选C.
练习册系列答案
相关题目
【题目】某厂工人小王某月工作的部分信息如下:
信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;
信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于45件.
生产产品件数与所用时间之间的关系见下表:
生产甲产品件数(件) | 生产乙产品件数(件) | 所用总时间(分) |
10 | 10 | 500 |
15 | 20 | 900 |
信息三:按件计酬,每生产一件甲产品可得6元,每生产一件乙产品可得10元.
根据以上信息,回答下列问题:
(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分?
(2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?