题目内容
【题目】如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,交y轴于点C,点D为抛物线的顶点,连接BD,点H为BD的中点.请解答下列问题:
(1)求抛物线的解析式及顶点D的坐标;
(2)在y轴上找一点P,使PD+PH的值最小,则PD+PH的最小值为 .
(注:抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣,顶点坐标为(﹣,)
【答案】(1)函数的解析式为:y=﹣x2+2x+3,顶点D(1,4);(2).
【解析】
先利用待定系数法求出函数的解析式,再连接H′D与y轴交于点P,则PD+PH最小.
(1)∵抛物线y=﹣x2+bx+c过点A(﹣1,0),B(3,0)
∴
解得
∴所求函数的解析式为:y=﹣x2+2x+3
y=﹣x2+2x+3=﹣(x﹣1)2+4
∴顶点D(1,4)
(2)∵B(3,0),D(1,4)
∴中点H的坐标为(2,2)其关于y轴的对称点H′坐标为(﹣2,2)
连接H′D与y轴交于点P,则PD+PH最小
且最小值为: =
∴答案:.
练习册系列答案
相关题目
【题目】某批乒乓球的质量检验结果如下:
抽取的乒乓球数n | 200 | 500 | 1000 | 1500 | 2000 |
优等品频数m | 188 | 471 | 946 | 1426 | 1898 |
优等品频率 | 0.940 | 0.942 | 0.946 | 0.951 | 0.949 |
(1)画出这批乒乓球“优等品”频率的折线统计图;
(2)这批乒乓球“优等品”的概率的估计值是多少?
(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.
①求从袋中摸出一个球是黄球的概率;
②现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于, 问至少取出了多少个黑球?