题目内容

【题目】如图,四边形ABCD是某新建厂区示意图,∠A=75°,∠B=45°,BC⊥CD,AB=500 米,AD=200米,现在要在厂区四周建围墙,求围墙的长度有多少米?

【答案】解:如图,过点A作AE⊥BC于点E,过点D作DF⊥AE于点F,

∵∠B=45°,
∴△ABE是等腰直角三角形,
∴AE=BE,∠BAE=∠B=45°.
∵AB=500 米,
∴AE=BE=500 × =500米.
∵∠A=75°,
∴∠DAF=75°﹣45°=30°.
∵AD=200米,
∴DF= AD=100米,AF=200× =100 米.
∵BC⊥CD,
∴四边形CDFE是矩形,
∴CD=EF=AE﹣AF=(500﹣100 )米,CE=DF=100米,
∴AB+BC+AD+CD=500 +(500+100)+200+(500﹣100 )=(1300+500 ﹣100 )米.
答:围墙的长度是(1300+500 ﹣100 )米.
【解析】过点A作AE⊥BC于点E,过点D作DF⊥AE于点F,根据∠B=45°可得出△ABE是等腰直角三角形,故可得出AE=BE,∠BAE=∠B=45°.再由∠A=75°可得出∠DAF的度数,进而可得出AF及DF的长,根据BC⊥CD可得出四边形CDFE是矩形,故可得出CD=EF,CE=DF,据此可得出结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网