题目内容
【题目】如图,A、B、C为⊙O上的点,PC过O点,交⊙O于D点,PD=OD,若OB⊥AC于E点.
(1)判断A是否是PB的中点,并说明理由;
(2)若⊙O半径为8,试求BC的长.
【答案】
(1)解:A是PB的中点,
理由:连接AD,
∵CD是⊙O的直径,
∴AD⊥AC,
∵OB⊥AC,
∴AD∥OB,
∵PD=OD,
∴PA=AB,
∴A是PB的中点
(2)∵AD∥OB,
∴△APD∽△BPO,
∴ ,
∵⊙O半径为8,
∴OB=8,
∴AD=4,
∴AC= =4 ,
∵OB⊥AC,
∴AE=CE=2 ,
∵OE= AD=2,
∴BE=6,
∴BC= =4 .
【解析】(1)连接AD,由CD是⊙O的直径,得到AD⊥AC,推出AD∥OB,根据平行线等分线段定理得到PA=AB;(2)根据相似三角形的性质得到OB=8,求得AD=4,根据勾股定理得到AC= =4 ,根据垂径定理得到AE=CE=2 ,由勾股定理即可得到结论
【考点精析】掌握勾股定理的概念和垂径定理是解答本题的根本,需要知道直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
练习册系列答案
相关题目
【题目】从2开始,连续的偶数相加,它们和的情况如表:
加数的个数n | S |
1 | 2=1×2 |
2 | 2+4=6=2×3 |
3 | 2+4+6=15=3×4 |
4 | 2+4+6+8=20=4×5 |
5 | 2+4+6+8+10=30=5×6 |
(1)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=;
(2)如下数表是由从1开始的连续自然数组成,观察规律:
①第n行的第一个数可用含n的式子表示为;