题目内容
【题目】已知关于x的两个一元二次方程:
方程①: ;
方程②:x2+(2k+1)x﹣2k﹣3=0.
(1)若方程①有两个相等的实数根,求:k的值
(2)若方程①和②只有一个方程有实数根,请说明此时哪个方程没有实数根.
(3)若方程①和②有一个公共根a,求代数式(a2+4a﹣2)k+3a2+5a的值.
【答案】(1)k=﹣4;(2)证明见解析;(3)5;
【解析】
(1)根据一元二次方程的定义和判别式的意义得到1+≠0且△1=0,即(k+2)2-4(1+)×(-1)=0,求出k的值即可.(2)计算第2个方程的判别式得△2=(2k+3)2+4>0,利用判别式的意义可判断方程②总有实数根,于是可判断此时方程①没有实数根,(3)设a 是方程①和②的公共根,利用方程解的定义得到(1+)a2+(k+2)a-1=0 ③,a2+(2k+1)a-2k-3=0④,利用③×2(2+k)a2+(2k+4)a﹣2=0⑤,由⑤+④得(3+k)a2+(4k+5)a﹣2k=5,然后利用整体代入的方法计算代数式的值.
(1)∵方程①有两个相等的实数根,
∴ ,Δ1=0,
则k≠﹣2,△1=b2﹣4ac=(k+2)2﹣4(1+)×(﹣1)=k2+4k+4+4+2k=k2+6k+8,
则(k+2)(k+4)=0,
∴k=﹣2,k=﹣4,
∵k≠﹣2,
∴k=﹣4;
(2)∵△2=(2k+1)2﹣4×1×(﹣2k﹣3)=4k2+4k+1+8k+12=4k2+12k+13=(2k+3)2+4>0,
∴无论k为何值时,方程②总有实数根,
∵方程①、②只有一个方程有实数根,
∴此时方程①没有实数根.
(3)根据a是方程①和②的公共根,
∴③, a2+(2k+1)a﹣2k﹣3=0④,
∴③×2得:(2+k)a2+(2k+4)a﹣2=0⑤,
⑤+④得:(3+k)a2+(4k+5)a﹣2k=5,
代数式=(a2+4a﹣2)k+3a2+5a=(3+k)a2+(4k+5)a﹣2k=5.
故代数式的值为5.