题目内容

【题目】问题情境:如图1,△ABC为等腰直角三角形,∠ACB=90°EAC边上的一个动点(点EAC不重合),以CE为边在△ABC外作等腰直角△ECD,∠ECD=90°,连接BEAD.猜想线段BEAD之间的关系.

1)独立思考:请直接写出线段BEAD之间的数量关系:

2)合作交流:城南中学八年级某学习小组受上述问题的启发,将图(1)中的等腰直角△ECD绕着点C顺时针方向旋转至如图(2)的位置,BEAC于点H,交AD于点O.(1)中的结论是否仍然成立,请说明理由.

3)拓展延伸:图(1)中ADBE存在着怎样的位置关系?在等腰直角△ECD绕着点C顺时针方向旋转的过程中ADBE的这种位置关系是否会变化?请结合图(2)说明理由.

【答案】1BE=AD;(2)仍成立,理由见解析;(3)成立,理由见解析

【解析】

1)先利用边角边定理证明△BCE和△ACD全等,于是对应边BE=CD;(2)结论仍然成立,根据等腰直角三角形的性质,利用SAS定理证明△ACD≌△BCE,得对应边BE=AD;(3)因为△BCE≌△ACD,对应角∠CEB和∠CDA相等,再由同角的余角相等,可得BEAD;由△BCE和△ACD全等得∠CBE=CAD,而∠BMC和∠AMP是对顶角,结合三角形内角和可得∠APM=90°,则BEAD

1)解:如图(1)BE=AD

∵△ABCCDE都是等腰直角三角形,

BC=ACCE=CD,∠BCE=ACD=90

∴△BCE≌△ACDSAS),

BE=AD

2)不变化,理由如下:

∵△ABCCDE都是等腰直角三角形,

∴BC=AC,CE=DE,∠BCA=∠ECD=90°,

∴∠BCA+∠ACE=∠ECD+∠ACE,

∴∠BCE=∠ACD,

∴△BCE≌△ACDSAS),

∴BE=AD,

3)如图,

成立,理由如下:

由(1)知,△BCE≌△ACD

∴∠CEB=CDA

∵∠CBE+CEB=90°,

∴∠CBE+CDA=90°,

BEAD

由(2)得,∵△BCE≌△ACD

∴∠CBE=CAD

BMC=AMP

∵∠APM=BCM=90°,

BEAD.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网