题目内容
【题目】(1)问题提出:苏科版《数学》九年级(上册)习题2.1有这样一道练习题:如图①,BD、CE是△ABC的高,M是BC的中点,点B、C、D、E是否在以点M为圆心的同一个圆上?为什么?
在解决此题时,若想要说明“点B、C、D、E在以点M为圆心的同一个圆上”,在连接MD、ME的基础上,只需证明 .
(2)初步思考:如图②,BD、CE是锐角△ABC的高,连接DE.求证:∠ADE=∠ABC,小敏在解答此题时,利用了“圆的内接四边形的对角互补”进行证明.(请你根据小敏的思路完成证明过程.)
(3)推广运用:如图③,BD、CE、AF是锐角△ABC的高,三条高的交点G叫做△ABC的垂心,连接DE、EF、FD,求证:点G是△DEF的内心.
【答案】(1)ME=MD=MB=MC;(2)证明见解析;(3)证明见解析.
【解析】
(1)要证四个点在同一圆上,即证明四个点到定点距离相等.
(2)由“直角三角形斜边上的中线等于斜边的一半”,即能证ME=MD=MB=MC,得到四边形BCDE为圆内接四边形,故有对角互补.
(3)根据内心定义,需证明DG、EG、FG分别平分∠EDF、∠DEF、∠DFE.由点B、C、D、E四点共圆,可得同弧所对的圆周角∠CBD=∠CED.又因为∠BEG=∠BFG=90°,根据(2)易证点B、F、G、E也四点共圆,有同弧所对的圆周角∠FBG=∠FEG,等量代换有∠CED=∠FEG,同理可证其余两个内角的平分线.
解:(1)根据圆的定义可知,当点B、C、D、E到点M距离相等时,即他们在圆M上
故答案为:ME=MD=MB=MC
(2)证明:连接MD、ME
∵BD、CE是△ABC的高
∴BD⊥AC,CE⊥AB
∴∠BDC=∠CEB=90°
∵M为BC的中点
∴ME=MD=BC=MB=MC
∴点B、C、D、E在以点M为圆心的同一个圆上
∴∠ABC+CDE=180°
∵∠ADE+∠CDE=180°
∴∠ADE=∠ABC
(3)证明:取BG中点N,连接EN、FN
∵CE、AF是△ABC的高
∴∠BEG=∠BFG=90°
∴EN=FN=BG=BN=NG
∴点B、F、G、E在以点N为圆心的同一个圆上
∴∠FBG=∠FEG
∵由(2)证得点B、C、D、E在同一个圆上
∴∠FBG=∠CED
∴∠FEG=∠CED
同理可证:∠EFG=∠AFD,∠EDG=∠FDG
∴点G是△DEF的内心