题目内容
【题目】如图,菱形ABCD中,对角线AC和BD相交于点O,AC=10,BD=4,动点P在边AB上运动,以点O为圆心,OP为半径作⊙O,CQ切⊙O于点Q,则在点P运动过程中,CQ的长的最大值为_______.
【答案】
【解析】
首先连接OQ,由CQ切⊙O于点Q,可得当OQ最小时,CQ最大,即当OP⊥AB时,CQ最大,然后由菱形与直角三角形的性质求得OP的长,继而求得答案.
解:连接OQ
∵CQ切⊙O于点Q
∴OQ⊥CQ
∴∠CQO=90°
∴CQ=
∵四边形ABCD是菱形,AC=10,BD=4
∴AC⊥BD,OA=OC=AC=5,OB=OD=BD=2
∴AB==
∴OC是定值
即当OQ最小时,CQ最大
∴当OP最小时,CQ最大
∴当OP⊥AB时,CQ最大
在Rt△AOB中,OP=
∴OQ=OP=
∴CQ===
故答案为.
【题目】如图,M是弦与弧所围成的图形的内部的一个定点,P是弦上一动点,连接并延长交弧于点Q,连接.
已知,设A,P两点间的距离为,P,Q两点间距离为,两点间距离为.
小明根据学习函数的经验,分别对函数随自变量x的变化而变化的规律进行了研究.下面是小明的探究过程,请补充完整.
(1)按照如表中自变量x的值进行取点、画图、测量,分别得到了与x的几组对应值,补全下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
5.24 | 4.24 | 3.24 | 1.54 | 1.79 | 3.47 | ||
1.31 | 1.34 | 1.42 | 1.54 | 1.80 | 2.45 | 3.47 |
(2)在同一平面直角坐标系中,描出表中各组数值对应的点和并画出函数的图象;
(3)结合函数图象,解决问题:当为等腰三角形时,的长度约_________.(精确到0.1)
【题目】张老师把微信运动里“好友计步榜”排名前20的好友一天行走的步数做了整理,绘制了如下不完整的统计图表:
组别 | 步数分组 | 频率 |
A | x<6000 | 0.1 |
B | 6000≤x<7000 | 0.5 |
C | 7000≤x<8000 | m |
D | x≥8000 | n |
合计 | 1 |
根据信息解答下列问题:
(1)填空:m= ,n= ;并补全条形统计图;
(2)这20名朋友一天行走步数的中位数落在 组;(填组别)
(3)张老师准备随机给排名前4名的甲、乙、丙、丁中的两位点赞,请求出甲、乙被同时点赞的概率.