题目内容

【题目】探究与应用.试完成下列问题:
(1)如图①,已知等腰Rt△ABC中,∠C=90°,点O为AB的中点,作∠POQ=90°,分别交AC、BC于点P、Q,连结PQ、CO,求证:AP2+BQ2=PQ2
(2)如图②,将等腰Rt△ABC改为任意直角三角形,点O仍为AB的中点,∠POQ=90°,试探索上述结论AP2+BQ2=PQ2是否仍成立;
(3)通过上述探究(可直接运用上述结论),试解决下面的问题:如图③,已知Rt△ABC中,∠C=90°,AC=6,BC=8,点O为AB的中点,过C、O两点的圆分别交AC、BC于P、Q,连结PQ,求△PCQ面积的最大值.

【答案】
(1)证明:∵△ABC是等腰直角三角形,O为斜边AB中点,

∴AO=OC=OB,∠A=∠B=∠OCQ=45°,∠AOC=90°,

∵∠POQ=90°,

∴∠AOP+∠POC=∠POC+∠COQ,

∴∠AOP=∠COQ,

在△AOP和△COQ中

∴△AOP≌△COQ,

∴AP=CQ,

同理BQ=CP,

在Rt△CPQ中,CP2+CQ2=PQ2

∴AP2+BQ2=PQ2


(2)解:还成立,

理由是:延长QO到D,使OD=OQ,连接AD,PD,

∵O是AB中点,

∴AO=OB,

在△AOD和△BOQ中

∴△AOD≌△BOQ(SAS),

∴AD=BQ,∠BAD=∠B,OD=OQ,

∵PO⊥OQ,

∴PD=PQ,

∵∠C=90°,

∴∠PAD=90°,

在Rt△PAD中,由勾股定理得:AP2+AD2=PD2

∴AP2+BQ2=PQ2


(3)解:∵∠C=90°,

∴PQ是直径,

连接PO、OQ,则∠POQ=90°,

∴AP2+BQ2=PQ2

设PC=a,CQ=b,

∴(6﹣a)2+(8﹣b)2=a2+b2

∴3a+4b=25,

∴b=﹣ a+

∵SPCQ= ab,

∴SPCQ=﹣ a2+ a=﹣ (a﹣ 2+

当a= 时,△PCQ的面积的最大值是


【解析】(1)证△APO≌△COQ,求出AP=CQ,同理求出BQ=CP,根据勾股定理求出即可;(2)延长QO到D,使OD=OQ,连接AD,PD,求出PD=PQ,证△AOD≌△BOQ,推出AD=BQ,∠BAD=∠B,OD=OQ,在Rt△PAD中,由勾股定理得:AP2+AD2=PD2 , 即可得出答案;(3)连接PO、OQ,则∠POQ=90°,根据勾股定理得出AP2+BQ2=PQ2 , 设PC=a,CQ=b,推出(6﹣a)2+(8﹣b)2=a2+b2 , 求出b=﹣ a+ ,代入SPCQ= ab求出即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网