题目内容

【题目】为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的形状(如图所示),对应的两条抛物线关于y轴对称,AE∥x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm,则右轮廓DFE所在抛物线的解析式为(
A.y= (x+3)2
B.y= (x﹣3)2
C.y=﹣ (x+3)2
D.y=﹣ (x﹣3)2

【答案】B
【解析】解:∵高CH=1cm,BD=2cm,且B、D关于y轴对称, ∴D点坐标为(1,1),
∵AB∥x轴,AB=4cm,最低点C在x轴上,
∴AB关于直线CH对称,
∴左边抛物线的顶点C的坐标为(﹣3,0),
∴右边抛物线的顶点F的坐标为(3,0),
设右边抛物线的解析式为y=a(x﹣3)2
把D(1,1)代入得1=a×(1﹣3)2 , 解得a=
∴右边抛物线的解析式为y= (x﹣3)2
故选:B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网