题目内容

【题目】如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)若∠DBC=30°,DE=1cm,求BD的长.

【答案】
(1)证明:连接OA,

∵DA平分∠BDE,

∴∠BDA=∠EDA.

∵OA=OD,

∴∠ODA=∠OAD,

∴∠OAD=∠EDA,

∴OA∥CE.

∵AE⊥CE,

∴AE⊥OA.

∴AE是⊙O的切线


(2)解:∵BD是直径,

∴∠BCD=∠BAD=90°.

∵∠DBC=30°,∠BDC=60°,

∴∠BDE=120°.

∵DA平分∠BDE,

∴∠BDA=∠EDA=60°.

∴∠ABD=∠EAD=30°.

∵在Rt△AED中,∠AED=90°,∠EAD=30°,

∴AD=2DE.

∵在Rt△ABD中,∠BAD=90°,∠ABD=30°,

∴BD=2AD=4DE.

∵DE的长是1cm,

∴BD的长是4cm.


【解析】(1)连接OA,根据角之间的互余关系可得∠OAE=∠DEA=90°,故AE⊥OA,即AE是⊙O的切线;(2)根据圆周角定理,可得在Rt△AED中,∠AED=90°,∠EAD=30°,有AD=2DE;在Rt△ABD中,∠BAD=90°,∠ABD=30°,有BD=2AD=4DE,即可得出答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网